Literature

[1] Brenan, K. E., S. L. Campbell and L. R. Petzold. Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. Philadelphia: Society for Industrial and Applied Mathematics, 1996.

[2] Hairer, E., S. P. Norsett and G. Wanner. Solving Ordinary Differential Equations II. 2nd rev. Edition, Berlin: Springer Verlag, 1993.

[3] Geiger, C. and C. Kanzow. Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Berlin: Springer Verlag, 1999.

[4] Modelica Association. Modelica® – A Unified Object-Oriented Language for Physical System Modeling. Language Specification Version 3.2 Revision 2., Modelica Association, 2013.

[5] Hindmarsh, A. C., P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker and C. S. Woodward. "SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers.", ACM Transactions on Mathematical Software, Volume 31, Issue 3, 2005, pp. 363-396.

[6] Object Management Group. OMG Unified Modeling Language (UML) Specification. Version 2.1.2, 2007.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Fourth Edition, Baltimore, MD, USA: Johns Hopkins University Press, 2013.

[8] Wilkinson, J. H.. Note on matrices with a very ill-conditioned eigenproblem, Numerische Mathematik, Volume 19, Issue 2, 1972, pp. 176-178.

[9] Lemonnier, D and Van Dooren, Paul. Balancing regular matrix pencils. SIAM Journal on Matrix Analysis and Applications, Volume 28, Issue 1, 2006, pp. 253-263.

[10] L. Skrinjar, J. Slavič, M. Boltežar: "A review of continuous contact-force models in multibody dynamics", International Journal of Mechanical Sciences 145 (2018): 171-187.

[11] H. Elmqvist, A. Goteman, V. Roxling, and T. Ghandriz.: "Generic Modelica Framework for MultiBody Contacts and Discrete Element Method", Proc. of the 11th International Modelica Conference 118 (2015): 427-440.

[12] P. Brown, J. McPhee: "A continuous velocity-based friction model for dynamics and control with physically meaningful parameters", Journal of Computational and Nonlinear Dynamics 11.5 (2016).

[13] W.J. Tiktak, Heat Management of PEM Electrolysis, Delft, 2019

[14] Haluk GoÃàrguÃàn. Dynamic modelling of a proton exchange membrane (PEM) electrolyser. International Journal of Hydrogen Power, 31(1):29-38, 2006. ISSN 03603199. doi: 10.1016/j. ijhydene.2005.04.001.

[15] R. García­Valverde, N. Espinosa, and A. Urbina. Simple PEM water electrolyzer model and ex­ perimental validation. International Journal of Hydrogen Power, 37(2):1927–1938, 2012. ISSN 03603199. doi: 10.1016/j.ijhydene.2011.09.027.

[16] Burin Yodwong, Damien Guilbert, Matheepot Phattanasak, Wattana Kaewmanee, Melika Hinaje and Gianpaolo Vitale , “Proton Exchange Membrane Electrolyzer Modeling for Power Electronics Control: A Short Review”

[17] Jay Tawee Pukrushpan, Modeling and control of fuel cell systems and fuel processors, The University of Michigan, 2003